
J Comput Virol
DOI 10.1007/s11416-006-0016-y

ORIGINAL PAPER

How to assess the effectiveness of your anti-virus?

Sébastien Josse

Received: 13 January 2006 / Revised: 11 February 2006 / Accepted: 16 April 2006
© Springer-Verlag France 2006

Abstract I will present an approach whose purpose
aims at supporting and making easier and more relevant
the choice of an anti-virus product. Among the qualities,
which one can expect from an anti-virus product, appear
classically the optimal use of the resources and the reac-
tivity of the manufacturer, particularly concerning the
viral signature base update. If these requirements are
significant, other methodical and technical verifications
may be required in order for an individual or a company
to make their choice. In the Common Criteria evaluation
scheme, a protection profile is proposed to help a soft-
ware manufacturer to design a product that should be
evaluated by an independent security evaluation labora-
tory. Protection profiles are written in accordance with
the Common Criteria standard. Starting from a protec-
tion profile, we list some tests that could be carried out
to validate the security requirements of an anti-virus
product. Both use of a protection profile and the speci-
fication of tests seem to be a valuable basis to measure
the confidence to grant an anti-virus product.

S. Josse (B)
Laboratoire de virologie et de cryptologie
Ecole Supérieure et d’Application des Transmissions
B.P. 18, 35998 Rennes, France
e-mail: Sebastien.Josse@esat.terre.defense.gouv.fr

S. Josse
Silicomp-AQL,
1 rue de la Châtaigneraie,
Cesson-Sévigné, CS 51766, France
e-mail: Sebastien.Josse@aql.fr

1 Introduction

1.1 What is effectiveness?

End-users, when choosing an anti-virus, focus on classi-
cal qualities:
• Optimal use of the resources;
• Reactivity of the manufacturer.

Evaluation Lab analysts, when assessing the level of con-
fidence to grant a security product, focus on:

• Conformity to standard criteria, shared by manufac-
turer and evaluation lab;

• Robustness against threat;
• Design and implementation quality, regarding a state-

of-art in the field.

Starting from evaluator and manufacturer shared crite-
ria, functional tests allow to validate mandatory security
requirements.

Technological monitoring of threat, by using vulnera-
bility database, like CVE [14], BugTraq [32] or Vigil@nce,
enable to assess robustness of a security product, by
developping adapted penetration tests (pen-tests).

Both functional tests and pen-tests permit to assess
design and implementation quality.

Our definition of effectiveness cover these two points-
of-view (End-user and Security evaluator):

The effectiveness of an anti-virus product rests on
conformity to defined criteria, which corresponds to
the state-of-the-art in the field and to an expression
of need for security. A test bench must be used as a
support for the analysis of security functions and mech-
anisms. The effectiveness of the anti-virus product is
evaluated according to the robustness of its elementary
mechanisms.

S. Josse

1.2 How to assess?

Choosing an anti-virus product may be difficult. One of
the reasons is that internal mechanics of these products
(in particular algorithms used and design features) are
generally not well documented.

Consequently, how can one be sure to make the right
choice?

Some companies grant anti-virus products with awards
or quality certificates.

A first example is the VB100% Award [44]. To get this
label, an anti-virus product must detect all viruses from
a pre-set list (In-the-Wild1 viruses) and must generate
no false positives when analyzing a set of clean files.

A second example is the WCL Checkmark [46]. To
get the WCL Checkmark, level 1, an anti-virus prod-
uct must detect all In-the-Wild viruses and should not
cause any false alarms when analyzing a set of clean
files. To get the WCL Checkmark, level 2, the product
must in addition get rid of all viruses in the Wild-List
(which are capable of disinfection). Additional check-
marks can be provided by WCL, which assess the detec-
tion rate against specific malware types (WCL Trojan
Checkmark, WCL Spyware Checkmark).

A third example is the ICSA Labs Certificate [28]. To
obtain the certificate, an anti-virus product must satisfy
all requirements in the primary criteria module, which
correspond to its product category (for example, Desk-
top/Server anti-virus product category). Testing against
the secondary criteria module (cleaning module) is
optional. Virus Certification Test Suites Matrix maps
anti-virus types towards several virus collections (In-
the-wild, common infectors and Zoo).

Virus Bulletin, West Coast Labs, and ICSA Lab tests
focus on detection rates. All these laboratories use
(among additional virus collections) the well-known
Wild-List for their tests. Let us focus on ICSA Labs.

ICSA Labs’ own certification criteria are quite similar
to the Common Criteria: anti-virus products satisfying
the requirements in the primary module should be capa-
be of detecting and preventing the replication of viruses,
reporting no false positives, logging the results of virus
detection attempts, and performing necessary adminis-
trative functions. These requirements can be seen as a
subset of functional Common Criteria requirements that
are described later in this document.

However, ICSA Lab’s approach does not take into
account the insurance components related to the de-
sign choice or the quality of the product development.

1 The Wild-List is a list of viruses that are known to be active
and widespread. Viruses of this list are usually called In-The-Wild
viruses.

ICSA Lab certification criteria are based neither on fun-
damental design and engineering principles, nor on an
assessment of underlying technology. Their approach
is a black-box approach, which is results-oriented. The
main advantage of ICSA Lab’s approach is that test pro-
cedures are easily automated and repeatable for an anti-
virus product. The main drawback is that the tests are
not accurate enough to increase the evaluation assur-
ance level, as they are not open to interpretation and
analysis. It is at the same time a quality and a limitation.
For example, these criteria are not precise enough to
make a product source code review possible.

Moreover, ICSA Labs’ certification criteria do not
take the environment requirements of the target of eval-
uation into consideration. The scope of their analysis is
limited to the product. Finally, it remains difficult to
know which tests have been carried out according to the
criteria chosen by these companies.

In this paper, an approach is described for making
the choice of an anti-virus product easier and more rel-
evant. Starting from a protection profile, we list some
tests that should be carried out to validate the security
requirements of any anti-virus product.

Our approach is complementary to those introduced
by the laboratories previously mentioned. We focus on
the robustness of security functions and mechanisms
with regards to the specific vulnerabilities of this prod-
uct category. We enlarge the scope of their evaluation
by taking into account system environment and internal
design.

1.3 Results

It appeared important to us, regarding to the current
viral threat, to provide ourselves with tools to repro-
duce or simulate a viral attack. Thus, several character-
istic viral mechanisms were implemented. It should be
noted that these viral techniques are applied more and
more often (by the researchers) to the validation of new
viral intrusion behavioral detection techniques. These
viral techniques were applied to the validation of secu-
rity functions of the anti-virus products. Most complete
achievements on this topic are: the implementation of
an obfuscation engine and the implementation of a tool
for injecting relocatable code remotely.

In the context of a sword-against-shield battle, it
appeared important also to understand the constraints
related to the implementation of an anti-virus product.
Thus, several of the current components of an anti-
virus product were specified and developed. Our most
complete achievements on this point are: the implemen-
tation of an on-demand scanner of viral code and the
implementation of a real-time monitor.

How to assess the effectiveness of your anti-virus?

Finally, a family of tests (benchmark, functional tests,
penetration tests) has been specified and has been used
for improving the effectiveness of the security functions
of an anti-virus product against the viral threat.

1.4 Structure of the document

Tools that have been adapted or developed within the
framework of our analyses are described at the same
time as they are used for the tests. Firstly, the analysis
criteria used are presented, as well as the supporting ele-
ments of the selected tests. Secondly, the platform and
the most representative tests are presented. Finally, we
conclude with our achievements and results and provide
future trends and topics to investigate.

2 Our approach

2.1 Analysis criteria

First of all, to compare products it is important to define
a clear target, with regards to the category of the prod-
uct and the characteristics of its environment. We used
the scope defined by the protection profile: US Gov-
ernment Protection Profile Anti-Virus Applications for
Workstations in Basic Robustness Environments [7].

A protection profile is an implementation-indepen-
dent specification of information assurance security
requirements. Protection profiles are a complete combi-
nation of security objectives, security related functional
requirements, information assurance requirements,
assumptions, and rationale. Protection profiles are writ-
ten in accordance with the Common Criteria standard.
In the Common Criteria evaluation scheme, a protec-
tion profile is made to allow a software manufacturer to
design a product that should be evaluated by an inde-
pendent security evaluation laboratory. Security ana-
lysts perform testing and security requirements rating.
Several actors may take part in this process: security
analysts, developers of the targeted anti-virus product,
a third party in charge of arbitration. For example, in
France, the third party is a governmental organization,
which belongs to the Prime Minister’s offices. The secu-
rity evaluation laboratory must also be agreed by this
third party.

This protection profile [7] specifies the minimum secu-
rity requirements for an anti-virus application used on
workstations in the US government in basic robust-
ness environments. The target strength level (i.e., how
well the target of evaluation can protect itself and its
resources) of basic robustness environments is consid-
ered as sufficient for low threat environments or where
compromise of protected information will not have a

Fig. 1 Target of evaluation and its environment

significant impact on mission objectives. This point is
discussed in detail in CCEVS [7]. This protection pro-
file is based on the Common Criteria, Version 2.2. The
following figure (Figure 1) depicts the evaluation target
and its environment.

This protection profile and Common Criteria have
been used as a basis (method and terminology) for our
analyses. For example, in this terminology, virus is used
generically to refer to an entire suite of exploits of secu-
rity vulnerabilities, such as Worms and Trojan Horses.
The same term is used more specifically to refer to ex-
ploits that replicate themselves. The term anti-virus typ-
ically refers to measures used to counter the entire suite
of exploits, not just the more specific definition of virus.

2.2 Selected tests

The analysis has been carried out of several off-the-shelf
anti-virus products, which have been chosen according
to their reputation or to the statute of the manufacturer
on the software market. A set of tests, which were dis-
criminatory enough to enable a comparative analysis of
the products, has gradually been made.

The developed tests are intended to validate the secu-
rity functions of an anti-virus product with regards to the
security requirements defined in the protection profile.
These requirements relate either to the security func-
tions of the anti-virus product, or to its environment.
Additional requirements, relating to the insurance com-
ponents, make it possible to validate the quality of the
software development and the technological awareness
of the anti-virus product manufacturer. At the end of
this section the security requirements (functional, envi-
ronment, quality) and the corresponding validation tests
are given. Tests are described in the second part of this
document.

The tables (Tables 5, 6 in the Appendix) points out
the principal security requirements relating to the secu-
rity functions of an anti-virus product. A more detailed

S. Josse

description of these requirements can be found in
CCEVS [7]. The tests, which make it possible to val-
idate these security functions (in comparison with the
security requirements), are summarized in the follow-
ing table (Table 1). A detailed description of these tests
can be found in the second part of this document.

The table (Table 7, Appendix) points out the main
security requirements relating to the environment of the
target. The following table (Table 2) presents the tests,
which permits the robustness of the security functions
to be validated with regard to the requirements relating
to the environment of the target.

The table (Table 8 in the Appendix) points out the
main security requirements relating to the quality assur-
ance components. The following table (Table 3) presents
the tests, which make it possible to check that the require-
ments relating to quality are covered.

Table 1 Security functions requirements tests

Functional requirement Test

FAV_ACT_EXP.1 Anti-virus actions
FAV_ACT_EXP.1.1 TST_MEM
FAV_ACT_EXP.1.2 TST_VXDAT
FAV_ACT_EXP.1.3 TST_MAIL
FAV_SCN_EXP.1 Anti-virus scanning
FAV_SCN_EXP.1.1 TST_MEM
FAV_SCN_EXP.1.2 TST_VXDAT,

TST_HEURISTIC,
FAV_SCN_EXP.1.3 TST_FMT, TST_DOC,
FAV_SCN_EXP.1.4 TST_UNICODE
FAU Security audit
FAU_GEN.1-NIAP-0347 TST_AUDIT
FAU_SAR.1
FAU_SAR.2
FAU_SAR.3
FAU_STG.1-NIAP-0429
FAU_STG.NIAP-0414-NIAP-0429
FCS Cryptographic support
FCS_COP1 TST_INTEG
FMT Security Management
FMT_MOF.1 TST_UPDATE, TST_AUDIT
FMT_MTD.1
FMT_SMF.1
FMT_SMR.1

Protection of the
security functions

FPT_SEP_EXP.1 TST_INSTALL, TST_INTEG

Table 2 Environment requirements tests

Environment requirement Validation test

FAU Security audit
FAU_STG.1-NIAP-0429 TST_AUDIT
FPT Protection of the security function
FPT_ITT.1 TST_INSTALL, TST_INTEG,
FPT_RVM.1 TST_UPDATE
FPT_SEP.1
FPT_STM.1

Tools have been implemented to refine our under-
standing of the products. The latter series of tests also
enable us to increase our level of comprehension of the
various operations that are likely to be performed by
any anti-virus product.

2.3 Supporting elements of the tests selected
and the analysis criteria used

2.3.1 Theoretical framework

The problems of virus detection are, from a formal point
of view, rather frozen:

• There is no system of detection/eradication which
makes it possible to identify a program as being mali-
cious without errors [13];

• There is no algorithmic transformation which makes
it possible to make the code of a malicious program
semantically unintelligible [3].

As the underlying theoretical models (viral set model,
obfuscator model) today have not been seriously ques-
tioned, we consider the problems of virus detection the-
oretically frozen.

2.3.2 Brief history of viral threat

I will give here a short overview of viral threat evolution:

• Encrypted: virus consists of a constant decryptor and
the encrypted virus body. Virus body is constant;

Table 3 Assurance requirements tests

Quality requirement Validation test

ACM Configuration management
ACM_CAP.2 TST_INSTALL
ADO Delivery and operation
ADO_DEL.1 TST_INSTALL
ADO_IGS.1
ADV Development
ADV_FSP.1 TST_INSTALL, TST_HEURIST,
ADV_HLD.1 SRC_CODE_REVIEW
ADV_RCR.1
AGD Guidance documents
AGD_ADM.1 TST_INSTALL
AGD_USR.1
ALC Life cycle support
ALC_FLR.2 TST_UPDATE
ATE Tests
ATE_COV.1 TST_MAIL, TST_HEURIST,
ATE_FUN.1 TST_MEM, TST_VXDAT,
ATE_IND.2 TST_AUDIT
AVA Vulnerability assessment
AVA_MSU.1 TST_FMT, TST_UNICODE,
AVA_SOF.1 TST_DOC, TST_INTEG
AVA_VLA.1

How to assess the effectiveness of your anti-virus?

• Oligomorphic: different versions of virus have differ-
ent encryptions of the same body;

• Polymorphic: virus contain a polymorphic engine for
creating new keys and new encryptions of its body.
Virus body is constant;

• Metamorphic: obvious next step. The virus mutates
its body too.

Metamorphic mutation techniques:

• Register swap: different register name;
• Substitutions: instruction sequences replaced with

other instructions that have the same effect, but differ-
ent opcodes;

• Permutation engine: instructions are reordered within
a basic bloc (intra-procedural transformation) or sub-
routines are reordered (inter-procedural transforma-
tion);

• Dead junk code inserted in unreachable code areas;
• Alive junk code, more robust by use of open predi-

cates;
• Code integration: virus integrates/merges itself into

the instruction flow of its host, by using a disassem-
bler and an engine which enables to rebuild/re-gener-
ate the host binary.

Armored viruses: slowing down the AVers work, by us-
ing classical or tricky software protection techniques,
specific cryptographic architectures and key manage-
ment infrastructures:

• Delayed code;
• Environmental Key Generation [22];
• Environmental Code Generation [2];
• Anti-disassembler;
• Anti-debug;
• Anti-dump;
• Anti-emulator: huge random code block insertion at

entry-point. Emulator executes code for a while, does
not see virus body and decides the code is benign.
When main virus body is finally executed, virus prop-
agates;

• Integrity checking by using White-Box Technology;
• Interleaved cipher layers;
• Etc.

2.3.3 AVers strike back

We give here a short overview of anti-virus reactions as
regard to the viral threat evolution:

• Encrypted/Oligomorphic viruses: signature based scan-
ner;

• Polymorphic viruses: heuristic engine and emulation;

• Metamorphic viruses, armored viruses: expert sys-
tems, by using model checking.

The architecture of the detection systems must evolve
and progress, from the simple pattern search engine to
an expert system,2 which formulate its diagnosis (i.e.,
answer the question: is this program viral?) only
after having correlated several detection models [21].
The evaluation of security products dedicated to viral
detection must be adapted to this theoretical and tech-
nological context.

Constant technological monitoring must be main-
tained, concerning:

• The viral threat and its development;
• Anti-virus product bypassing modes: propagation vec-

tors, stealth techniques, protection techniques, poly-
morphism;

• New antiviral techniques;

Adapted tests have to be specified. The specified tests
must take into account:

• The new viruses and the algorithmic innovations [16];
• The new antiviral techniques (is the anti-virus product

state-of-the-art?);
• The corrections of the published vulnerabilities (Con-

formity of the anti-virus product);

The specified tests must also report:

• The performance of the selected and implemented
algorithms by the anti-virus product (naive, worked
out, complexities. Is the anti-virus product user-
friendly?);

• The resistance to the black box analysis (security of
implementation, robustness of the anti-virus product)
[23].

Both the use of a protection profile (validated by
the methodological approach of the Common Criteria)
and the specification of tests (which give an account of
the cover of the security requirements) seem to be a
valuable basis to measure the confidence to grant an
anti-virus product.

2 An expert system is able to carry out a diagnosis by comparing
information, which results from one system with a priori knowl-
edge available on this system (as a human expert would do). An
expert system is made up of at least a knowledge base, a facts
and rules base, and of an inference engine. The inference engine
chooses the rules according to the observed facts.

S. Josse

2.4 Description of the tests platform

We have positioned our anti-virus tests in relation to a
fixed attack context: the techniques were studied on a PC
Intel/MS. Windows platform, because of its widespread
distribution (however, the majority of the tests produced
for this platform can be transposed without difficulty to
other platforms). The test platform must comprise:

• Virtualisation software, like VMware [45];
• Network probe tools;
• System diagnostic tools [12];
• Various tools possibly dedicated to static and dynamic

code analysis.

Regarding the Workstation environment parameter set-
ting, the operating system must be re-installed and up-
dated. No other antivirus must be installed.

3 Tests

We describe in this part the tests set which makes it pos-
sible to validate the security requirements relating to
the security functions of an anti-virus product, its envi-
ronment and the components of insurance relating to its
design. Table 4 below presents a summary of the tests,
which are described in more detail way in the rest of the
document.

3.1 TST_INSTALL (Installation of the anti-virus
product)

3.1.1 Goal

This test table is divided into two parts:

• A part dedicated to recovery of information on the
installation of the anti-virus product (interactions with
the API and NT register). These tests are carried out
during the installation;

• A part which makes it possible to test the robustness
of the installation and its robustness against low level
viral attacks (file system filter drivers, for example).
These tests are carried out after the installation.

3.1.2 Principle of operation

We automated the recovery of useful information at the
time as the installation of the product by implementing
techniques of listening to and bypassing calls accord-
ing to the API functions. There are many methods that
allow the code injection into the system environment or
into a process context, as well as the interception and

the redirection of API Win32 function calls towards the
injected code [6,18]. Trojan horses and spyware very
often implement these furtive techniques. These tech-
niques are also sometimes useful for tracing system calls
(in particular I/O towards the file system and the register
base) made by a viral program or to make certain pro-
tection software programs inoperative. These protec-
tions have been implemented for example by armoured
viruses [22]. It should be noted that these techniques of
instrumentation and interception of calls to API Win32
functions are also applied to the behavioral detection
of viral intrusion – cf. DOME, Detection of Malicious
Executable [15], and even to the implementation of real-
time control engines [48]. We use some of these tech-
niques to automatically trace system calls carried out
during the installation of the anti-virus product, in par-
ticular those taking part in the installation of filtering
drivers (use of the detours tools [6]).

We have also evaluated the robustness of the instal-
lation by testing (enable/unload or uninstall) the filter
drivers of the anti-virus product (using fltmc and devcon
tools [27,47]).

3.1.3 Analysis of the results

After the first step, we should obtain a snapshot of the
anti-virus product installation and a trace of its inter-
actions with several system components during instal-
lation process. After the second step, we should have a
good idea of the robustness of the anti-virus product,
concerning its drivers stack and register keys.

3.1.4 Other ideas

A lot of information can be retrieved by analysing the
interactions of the installation process with the core
components of the system (Kernel API, COM bus, etc.).
Tricky tests could be carried out to bypass the filter or
minifilter kernel mode driver of the anti-virus product
(instrumentation of the driver stack), and thus assess
more completely the robustness of installtion. Other
techniques can be used to instrument the API, like
call replacement in anti-virus installation function bi-
nary code or break-point trapping. The main constraint
is that the TST_INSTALL test bench remains automatic
and could apply to any anti-virus product.

3.2 TST_HEURISTIC (heuristic engine)

3.2.1 Goal

The objective of this test is to validate the correct opera-
tion of the heuristic engine of a given anti-virus product.

How to assess the effectiveness of your anti-virus?

This test also enables us to better understand the actions
performed by the heuristic engine.

3.2.2 Principle of operation

We consider a S0 population of healthy programs of
the system. We generate a S1 = T(S0) population of
healthy programs (Win32 executable files) having prop-
erties generally considered as suspect by any anti-virus
software regarding:

• The structure of the executable file (header, sections
of data and code);

• The executable file’s section code.

The T transformation was firstly implemented by using
an adapted version of Y0da’s packer [49]. This trans-
formation is actually performed by the obfuscator de-
scribed below, because its modularity is better. The exe-
cutable files generated by the T transformation have
characteristics incompatible with the code usually gen-
erated by a compiler of high-level language:

• Sections are not correct (for example the last section
is executable or the first section is accessible in writ-
ing, sections are incorrectly aligned or with strange
names);

• Header is not correct (incorrect values in the header,
unusual entry point).

We considered a V0 population made up of Win32
viruses. We built a population V1 = O(V0) by applica-
tion of an obfuscator O. We proceeded, as for the valida-
tion of the SAFE (Static Analyser For Executable) viral
detection engine [9], with an adaptation of the Mistfall
engine [50,51]. Let us note that this idea was also used
to validate the effectiveness of the SAVE viral detec-
tion engine [8], even if the authors did not automate
the application of the obfuscation transformations (the
transformations were applied manually, using a simple
hexadecimal editor). The viral engine Mistfall imple-
ments a disassembler (LDE) and a permutation engine
(RPME). We instrumented this engine so that it carries
out more complex obfuscation transformations [29]. We
coupled it with a generator of junk code and a base of
opaque predicates.

3.2.3 Analysis of the results

The correlated analysis of the S1, V0 and V1 popula-
tions makes it possible to draw several conclusions on
the anti-virus product:

• Its capacity to analyze polymorphic viruses;
• its capacity to analyze Entry-Point Obscuring (EPO)

viruses [25].

It is also possible to see which are the heuristic ones
used, as well as the limits imposed on the level of the
parameter setting by the manufacturer of the anti-virus
product (depth of the analysis, etc).

3.2.4 Other ideas

We did not explore the possibilities offered by the gen-
erators of viral code (Virus Generator Kits [33]). Their
use could supplement our analysis (generation ex nihilo
of a viral population V2. Nor did we explore the possi-
bilities offered by the fact of having the source code of
certain viruses. We could, starting from these programs,
build a V3 population by application of an obfuscator O
like Cloakware for the languages C/C++ and Java [11] or
SandMark for the Java language [31]. For example, the
LLVM compilation chain [30] seems well suited to the
application of obfuscation transformations on C source
code.

3.3 TST_MEM (Read-write memory analysis/worm
blocking)

3.3.1 Goal

The objective of this test is to validate the operation of
the anti-virus product, regarding the read-write memory.
This test makes it possible to check that a virus present
in the memory will be well detected by the anti-virus
product.

3.3.2 Principle of operation

We use a server process program authorizing the exploi-
tation of a buffer overflow [24]. This type of vulnerability
is used as a worm propagation vector. We inject relocat-
able3 viral code from a client program.

3.3.3 Analysis of the results

The anti-virus software must detect the presence of a
data-processing infection in the memory. Some antivi-
ruses have stack/heap overflow monitoring capabilities.
This functionality can be validated.

3 def: remote code injection, exploitation of a buffer overflow,
relocatable code, viral shellcode

S. Josse

3.3.4 Other ideas

The techniques used for remote code injection can be
improved to account for new generation exploits. Using
LSD or Metasploit framework for pen-tests can be a
complementary approach.

3.4 TST_FMT (Management of the various file
formats)

3.4.1 Goal

Some anti-virus products do not correctly analyze cer-
tain file formats. They are classified unknown instead
of being decoded and analyzed. An attacker can thus
employ illicit files in order to pass on a virus. This test
enables us to check if the anti-virus product suitably
manages the various formats of file and compression, in
particular when these formats are corrupted intention-
ally.

3.4.2 Principle of operation

We use GNU Win32 software to archive, compress or
pack a virus recognized by the anti-virus product (ARC,
ARJ, BASE64, BZIP2, GZIP, LHA, LZO, ms-compress,
SHAR, TAR, UPX, UUE, ZIP file formats or exten-
sions). We carry out the analysis of the directory con-
taining the packed, archived and/or compressed files.

Case of UPX format: UPX format [34] is used to com-
press a program and uncompress it before its execution.
Some anti-virus products cannot recognize such custom
UPX files as viral. A remote attacker can thus create a
virus, compress it in UPX and then apply a treatment to
it so that it is still recognized by the system as being a
UPX file, but no longer by the anti-virus product (it is an
evasion attack). The antivirus software can consider the
format as being unknown or the file as being corrupted
and not declare the presence of a virus to the user. Con-
sequently, the now confident user may decide to run it.
We have adapted the executable UPXRedir in order to
be able to transform a UPX file into a file recognized
as UPX by the system but not by the anti-virus product
(when this one does not manage this format in a cor-
rect way). Thus the test consists of compressing a viral
executable file with UPX format, ensuring that the anti-
virus product detects the virus in this format and then
corrupting the executable file before again subjecting it
to the analysis.

Case of the Zip format: By using a custom Zip file
[39,40], an attacker can circumvent some anti-virus soft-
ware. The Zip files are compressed files containing one
or more documents and/or directories. A header pre-

cedes each one of these documents. In the same way,
a summary of all the files appears at the end of the
archive. An attacker can modify the file sizes appear-
ing in the header and the summary. Thus, an additional
document can be hidden in the file. WinZip and the
Windows decompression utility extract the hidden file.
However, some anti-virus products do not detect it. Any
attacker can thus create a file containing a virus that will
not be detected before reaching the user’s workstation.
We have developed a tool that corrupts an archived file
with the Zip format, while zeroing the Uncompressed
Size fields of the Local File Header structures and the
Central Directory of the Zip file.

3.4.3 Analysis of the results

All the formats or encoding must be supported. Case
of intentionnaly corrupted file formats: some anti-virus
products do not properly inspect a file using the illicit
Zip and UPX format, and are thus vulnerable to this
evasion attack.

3.4.4 Other ideas

Zip and UPX formats are not the only formats that raise
these problems. The following formats are also subject
to evasion attack: RFC822 [35], MIME [36], LHA [38],
URI [41], ANSI ESC [42], RAR [43]. As a next step,
we envisage building necessary tools to make sure that
these formats are well managed by the anti-virus prod-
uct.

3.5 TST_DOC (Filtering of the document viruses)

3.5.1 Goal

This test checks that an anti-virus product suitably de-
tects the embedded viral code of an Office or HTML
document.

3.5.2 Principle of operation

Users often reactivate the execution of macros, scripts
or the applet in an Office application or a navigator,
to make the default configuration of the software more
flexible. We have adapted the conformity tests suggested
by eSafe to validate its script-filtering engine [20].

3.5.3 Analysis of the results

The anti-virus software must be able to notify the pres-
ence of viral code embedded in a document.

How to assess the effectiveness of your anti-virus?

3.6 TST_MAIL (Analysis of incoming and outgoing
e-mails)

3.6.1 Goal

This test validates functions analyzing incoming/outgo-
ing e-mails. Anti-virus product will monitor processes
attempting to send or receive e-mails and may block
traffic upon detection of a virus.

3.6.2 Principle of operation

The scenario of the test is simple: send and receive an
e-mail containing an attached viral file. Initially, the pro-
cedure described above can be carried out with the EI-
CAR test file [19]. The EICAR test file is a test file
allowing vendors to calibrate their systems. It should be
noted that a user without particular technical knowledge
could carry out this test very easily. Secondly, the proce-
dure described above can be repeated with other viruses
in attachment (highly compressed virus file, intention-
ally corrupted archive formatted virus files, viral code
embedded in a document, etc.).

3.6.3 Analysis of the results

According to the protection profile description of anti-
virus actions [7] and the state-of-the-art in the field of
anti-virus protection, we expect the anti-virus product
to detect and disinfect or remove the attachment.

3.6.4 Other ideas

Using the remote injection of relocatable code client/
server to validate security functions analyzing incom-
ing/outgoing e-mails, by using SMTP and POP/IMAP
protocols.

3.7 TST_VXDAT (Viral base analysis)

3.7.1 Goal

The objective of this test is to validate the completeness
of the viral signature base of the anti-virus product.

3.7.2 Principle of operation

We have a virus base (about 30,000 uniquely identified
viruses, at the time of analysis). We set up the scanner in
order to target the analysis on the directory containing
the viral base. In order to facilitate the maintenance of
the viral base, we have developed a real-time monitor,
which blocks the execution of the viral code (in the case

of accidental access to a viral program) and alerts the
administrator of the viral base.

This real-time monitor embeds three components:

• A client program, which recovers the I/O carried out
from user space towards the file systems and carries
out their analysis while applying:

– The Aho/Corasick pattern matching algorithm [1,
10] taking into consideration viral base signatures;

– The FDA/NFA pattern matching algorithm taking
into consideration a list of rational PCRE expres-
sions [26];

• A kernel mode driver, which makes it possible to
intercept the IRP and the fast I/O, communicated by
the I/O manager towards the file systems drivers (FAT,
NTFS, RDR4).

Once a virus is detected, the kernel driver blocks the
access to the file system and the user is notified by the cli-
ent program. The client program proceeds with the load-
ing of the signature base, with the initialization of the
motif search structures, with the opening of a communi-
cation channel towards the driver and with the creation
of threads. Each thread connected to the driver recov-
ers data from it and carries out the analysis (by pattern
matching). Upon virus detection, the thread raises an
alarm. Then the client program sends a message to the
driver that results in imposing a blocking of the I/O
request by the driver.

The driver is registered at the NT executive, and then
creates a port communications server on which it can
receive connection requests from the user mode. It in-
cludes in the port a security descriptor limiting access to
the administrator. It can then intercept all the packets
(IRP, Fast I/O) coming from the I/O manager towards
the file system drivers (FAT, NTFS, RDR). When an
I/O request towards the file system is performed in user
space, the driver retrieves information on the file, reads
the beginning of this file, passes the contents into user
space and sends an analysis request. If the file is suspect,
then the I/O request is blocked. If the file is not suspect
and the I/O request corresponds to a file opening in write
mode. Then the file will be analyzed again. The context
is recovered. If a new analysis is required, the driver
reads the beginning of the file again, passes the contents
into the user space and sends a new analysis request. If
the file is suspect, then the writing request is blocked.

4 RDR File Systems are NT Redirector, which permit Work-
station services to access remote files towards I/O Manager.
Redirectors are above TDI Transport Driver Interface, in a user
mode/kernel mode representation of WinNT layered network
architecture.

S. Josse

This real-time monitor locks the files. A file opened
by a process will thus not be able (before being closed)
to be read and executed by another process [17]. This
program carries out on-demand analysis of whole or part
of the viral base, with regards to the signature base.

3.7.3 Analysis of the results

The analysis of the virus base is carried out with sev-
eral configuration profiles (heuristic engine enabled/dis-
abled, analyze of archived files, default configuration,
etc.). The detection rates obtained are a valuable infor-
mation, which allows assessments of the completeness
of the virus signature database of the product and to
compare, on a result-oriented basis, several anti-virus
products.

3.7.4 Other ideas

Neither did we explore the possibilities offered by the
virus collection management tools, nor did we explore
the possibilities offered by the use of an emulator, in
order to check automatically that virus executables of
a collection effectively run and correspond with their
public description. For example, the command line tool
TTAnalyze [4] seems well suited for analyzing the inter-
actions of a virus executable with the Windows sys-
tem. The virus executable is run under a QEMU based
emulated environment [5]. The dynamic analysis (on a
virtual processor) analyses self-modifying viruses, includ-
ing packed and obfuscated executables. The QEMU
emulator engine monitors the execution of the program
and automatically gathers status information and inter-
actions with the host system.

3.8 TST_UNICODE (Unicode support)

3.8.1 Goal

This test checks that the anti-virus product implements
the Unicode format suitably. The incorrect implemen-
tation of this format is at the origin of certain evasion
attacks. The objective of this test is to check if the anti-
virus product detects viruses in long NT file system paths.
Few anti-virus products may not be able to detect a virus
that has an access path that is too long [37].

3.8.2 Principle of operation

The maximum size of the pathname is limited to
260 bytes for the directories and files created using the
standard functions of API Win32. This maximum size is
extended to 32,767 bytes for directories and files

created using the Unicode functions of API Win32.
Some anti-virus products are unable to detect viruses
located in the directories whose path has a size greater
than 260 bytes. Thus a virus may use this limitation to
put a file which cannot be erased, and which may con-
taminate the machine each time it boots up. In a general
way, the anti-virus products that do not use the API
Win32 Unicode functions are not able to detect viruses
located in tree structures of more than 260 bytes. We
have developed an executable file which confines the
viral code to the deepest part of a tree structure whose
size is customizable. This executable file carries out the
disinfection of the file system. Each time the viral code is
hidden too deeply in the tree structure of the file system,
some anti-virus products are no longer able to detect its
presence.

3.9 TST_AUDIT (Audit files)

3.9.1 Goal

The objective of this test is to validate the correct oper-
ations of the audit function of an anti-virus product,
regarding the types of events and informations that will
be recorded. This test aims at examining the robustness
of the audit function against modification of destruction
of the stored audit records.

3.9.2 Principle of operation

We can, for example, build a test to check the audit files
rotation function of the anti-virus software, when this
one imposes a limited size on the logs files. The scenario
of the test is simple: fill the log files and then check
automatic rotations.

3.9.3 Analysis of the results

The following events will be recorded:

• Start-up/shutdown of the audit security function;
• Selection of an action by the user;
• Action taken in response to the virus detection.

The audit security function will record (within each audit
record) the following information at least:

• Date and time of the event;
• Event type;
• Subject identity (for audit events resulting from ac-

tions of identified users);
• Outcome (success or failure) of the event;
• Action selected by a user or action taken in response

to the detection of a virus;

How to assess the effectiveness of your anti-virus?

• Description of the detected virus, file or process iden-
tifier where the virus was detected.

The audit security function should protect the stored
audit records from unauthorized modification/deletion
via the audit security function interface (the environ-
ment (OS) is responsible for preventing unauthorised
modification/deletion of the audit file via OS adminis-
tration interfaces). The audit security function shall pro-
vide the following options to prevent audit loss (if the
audit trail is full):

• Ignore auditable events;
• Prevent auditable events, except those taken by the

authorised user with special rights;
• Overwrite the oldest saved audit records.

3.10 TST_INTEG (Integrity of the viral signature base)

3.10.1 Goal

This test aims at examining the robustness of the signa-
ture file. The signature file of the product is often writ-
ten in a proprietary format. It should not be possible to
modify the contents of the file.

3.10.2 Principle of operation

We check the resistance of the product to restarting
when one deteriorates the integrity of the viral signature
base. The procedure is simple: we corrupt or affect the
integrity of the viral signature base. The objective is to
check the mechanisms that guarantee the viral signature
base integrity and to check the behavior of the software,
in terms of failure recovery. We perform several actions:

• Modification of the attribute: last modification date.
Writing in one of the files of the viral signatures base;

• Deletion of one of the signature base files;
• Deletion of one of the signature base file entries;
• Substitution of an old base to the new one;
• If several versions of the signature database are pres-

ent in the installation directory of the product, remove
and/or modify the most recent version.

3.10.3 Analysis of the results

In all cases, the refusal to load the base must be accom-
panied by an alarm or a notification. If a sound (but less
recent) version is loaded, the anti-virus product must
clearly announce the fact that it did not manage to reload
the viral signature base or that it is running in degraded
mode. These tests thus validate the integrity auto-tests
of each file of the viral signature base, the system of

on-error recovery and the alarm system of the anti-virus
product.

3.11 TST_UPDATE (Product updating)

3.11.1 Goal

An anti-virus product can be updated manually or by
using the automatic update function. For the latter, the
update is done on demand or in a scheduled way, at a
frequency chosen by the user.

3.11.2 Principle of operation

We use a network analyzer (ethereal) to trace how the
automatic updates are carried out. The analysis of the
Ethernet frames provides a better understanding of
the update process: client request, server response list-
ing the definition files available, their signatures and the
name of a server which can provide them, finally down-
loading the definition files, when necessary. An anal-
ysis of the symbols (strings) of the update executable
file may confirm the fact that the name of the server is
hard-coded in the program.

3.11.3 Analysis of the results

We are waiting for the use of a protocol that authenti-
cates the client, the update server, with possibly
mutual authentication. We expect (after downloading
of the update files of the signature base and possibly
of the anti-virus product analysis engines) an integrity
check on the downloaded files. It may be necessary to
restart the operating system or the anti-virus product.
The (graphical) Man to Machine Interface must an-
nounce the modifications made into the viral signature
base. The events related to the update of the product
must be logged.

4 Conclusion and future works

We have proposed in this paper an approach and tools
in order to help a single user or a company to be able to
choose an anti-virus product off the shelf with a certain
degree of confidence.

Both use of a protection profile (validated by the
methodological approach of the Common Criteria) and
the specification of security requirements validation tests
seem to be a valuable basis to measure the confidence
to grant an anti-virus product.

The main limitation induced by this approach is the
objective interpretation of the tests. Even if the tests

S. Josse

of our platform are automated, the results are some-
times firstly designed to enable the deepest investiga-
tion of the product internals. The verdict is not a binary
“pass/do not pass”, but rather an input used by the se-
curity analyst to issue his comments, as regards the way
the internal characteristics of an anti-virus product meet
the state-of-the-art in the field of host-based intrusion
detection systems and the security requirements of its
product category.

Our approach may obviously be optimized. The test
set must evolve on a regular basis, in order to take into
account the technical developments of the two protago-
nists involved. A constant technological watch must thus
be conducted and especially look for:

• Evolution of the viral threat, at the technical and algo-
rithmic level;

• New techniques and anti-virus software architectures;
• Vulnerabilities related to the design and the imple-

mentation of the anti-virus product and its environ-
ment.

The protection profile (used as a methodological
basis in this document) must also evolve to reinforce the
level of security requirements and thus to increase the
corresponding degree of confidence. A relevant test set
will have to enable its implementation. Current Eval-
uation Assurance Level of a product claiming confor-
mance to this PP is EAL2, which does not require an
analysis of the source code. Functional and black box
testing are enough in order to validate corresponding
security requirements. Results demonstrate the poten-
tial intrinsic information that can be extracted about
anti-virus internals, by grey box testing. In order to
be able to establish a greater Assurance Level, more
advanced testing tools and learning algorithms have to
be specified and implemented. The author focus actu-
ally on fault injection systems and Grey Box analysis
algorithms.

Appendices

Table 4 Functional and
penetration tests Test Description

TST_INSTALL Installation of the anti-virus product (recovery of
information on the installation and test of its robustness)

TST_HEURISTIC Heuristic engine (recovery of information on the
heuristic engine and its characteristics)

TST_MEM Read-write memory analysis / worm blocking
(validation of the ability to check memory and to protect
the host against virus propagation vectors)

TST_FMT Management of the various file formats (validation of
the ability to manage various file formats, in particular
when these formats are corrupted intentionally)

TST_DOC Filtering of the document viruses (validation of the
ability to detect embedded viral code of an Office
or HTML document)

TST_MAIL Analysis of incoming and outgoing mails (functional
validation of the ability to analyze SMTP traffic and
e-mails’ attached files)

TST_VXDAT Viral base analysis (validation of the completeness
of the viral signature base)

TST_UNICODE Unicode support (validation of the correct implementation
of Unicode format)

TST_AUDIT Audit files (functional validation)
TST_INTEG Integrity of the viral signature base (validation of

the robustness of the viral signature base)
TST_UPDATE Product updating (recovery of information on the

product updating process)

How to assess the effectiveness of your anti-virus?

Table 5 Functional
requirements (1/2) Functional requirement Description

FAV_ACT_EXP.1 Anti-virus actions
FAV_ACT_EXP.1.1 Upon detection of a memory-based virus, the

anti-virus security function will prevent the
virus from further execution.

FAV_ACT_EXP.1.2 Upon detection of a file-based virus, the anti-virus
security function will perform the actions specified
by the administrator. Actions are administratively
configurable on a per-workstation basis and consist of: clean the virus
from the file, quarantine the file, and delete the file.

FAV_ACT_EXP.1.3 The anti-virus security function will actively
monitor processes attempting to access a remote
system using TCP or UDP remote port
25 (SMTP) and block traffic from unauthorized processes.

FAV_ALR_EXP.1 Anti-virus alerts
An alert shall be displayed on the
screen of the workstation on which the virus is detected
and on the screen of the administrator (upon receipt of an audit event).
The alerts will continue to be displayed until
they are acknowledged by the user or by the administrator.

FAV_SCN_EXP.1 Anti-virus scanning
The anti-virus security function will perform
real-time scans for memory-based viruses and real-time,
scheduled and on-demand scans for file-based viruses.
The administrator shall perform scheduled scans at the time and frequency
configured by the administrator. The workstation
user shall perform manually invoked scans.

Table 6 Functional
requirements (2/2)

Functional requirement Description

FAU Security audit
The anti-virus security function will be able to
generate an audit record with suitable information,
to provide the user and administrator with
the capability to read all audit information, to
perform and sorting of audit data.
The stored audit records will be protected from unauthorised
deletion, modification or loss (if the audit trail is full).

FCS Cryptographic support
FCS_COP1 The anti-virus security function will calculate

a message digest to verify the integrity of the
signature files in accordance with a NIST FIPS
140-2 approved cryptographic algorithm.

FMT Security management
Management of security functions behaviour
and data, specification of management functions and security roles.
Protection of the security functions

FPT_SEP_EXP.1 Partial security functions domain separation.

S. Josse

Table 7 Environment
requirements

Environment requirement Description

FAU Security audit
FAU_STG.1-NIAP-0429 Protected audit trail storage
FDP User data protection
FDP_RIP.1 Subset residual information protection
FIA Identification and authentication
FIA_AFL.1 Authentication failure handling
FIA_SOS.1 Verification of secrets
FIA_UAU.2 User authentication before any action
FIA_UAU.6 Re-authenticating
FIA_UID.2 User identification before any action
FPT Protection of the security function
FPT_ITT.1 Basic internal security function data transfer protection
FPT_RVM.1 Non-bypassability of the security policy
FPT_SEP.1 Security function domain separation
FPT_STM.1 Reliable time stamps
FTA_SSL.1 Security function-initiated session locking
FTA_TAB.1 Default anti-virus product access banners

Table 8 Quality
requirements Quality requirement Description

ACM Configuration management
ACM_CAP.2 Configuration items
ADO Delivery and operation
ADO_DEL.1 Delivery procedures
ADO_IGS.1 Installation, generation, and start-up procedures
ADV Development
ADV_FSP.1 Informal functional specification
ADV_HLD.1 Descriptive high-level design
ADV_RCR.1 Informal correspondence demonstration
AGD Guidance documents
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance
ALC Life cycle support
ALC_FLR.2 Flaw reporting procedures
ATE Tests
ATE_COV.1 Evidence of coverage
ATE_FUN.1 Functional testing
ATE_IND.2 Independent testing - sample
AVA Vulnerability assessment
AVA_MSU.1 Examination of guidance
AVA_SOF.1 Strength of anti-virus product security function evaluation
AVA_VLA.1 Developer vulnerability analysis

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to
bibliographic search. Commun. ACM 18(6), 333–340 (1975)

2. Aycock, A., DeGraaf, R., Jacobson, M.: Anti-disassembly us-
ing Cryptographic Hash Functions. In: Proceedings of the 15th
EICAR Conference (2005)

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai,
A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscat-
ing programs. In: Advances in Cryptology – CRYPTO ‘01, vol.
2139 of Lecture Notes in Computer Science, pp. 1–18, Santa
Barbara (2001)

4. Bayer, U.: TTAnalyze: a tool for analyzing malware. Master’s
Thesis, Technical University of Vienna (2005)

5. Bellard, F.: QEMU, a fast and portable dynamic translator. In:
Proceedings of USENIX 2005 Annual Technical Conference,
pp. 41–46 (2005)

6. Brubacher, D., Hunt, G.: Detours: binary interception of
Win32 functions. In: Proceedings of the 3rd USENIX Win-
dows NT Symposium, pp. 135–143, Seattle (1999)

7. CCEVS: US Government Protection Profile Anti-Virus
Applications for Workstations in Basic Robustness
Environments. Version 1.0. (2005) http://niap.nist.gov/cc-
scheme/pp/PP_VID10053-PP.html

How to assess the effectiveness of your anti-virus?

8. Chavez, P., Mukkamala, S., Sung, A.H., Xu, J.: Static analyzer
of vicious executables (SAVE). In: Proceedings of the 20th
Annual Computer Security Applications Conference (AC-
SAC’04), pp. 326–334 (2004)

9. Christodorescu, M., Jha, S.: Static analysis of executables to
detect malicious patterns. In: Proceedings of the 12th Usenix
Security Symposium, pp. 169–186 (2003)

10. ClamAV (2006) http://www.clamav.net/
11. Cloakware (2006) http://www.cloakware.com/
12. Cogswell, B., Russinovich, M.: Sysinternals. (2006)

http://www.sysinternals.com/
13. Cohen, F.: Computer viruses. Doctoral dissertation, Univer-

sity of Southern California, California (1986)
14. Common Vulnerabilities and Exposures (2006) http://www.

cve.mitre.org/
15. Cunningham, R.K., Khazan, R.I., Lewandowski, S.M.,

Rabek, J.C.: Detection of injected, dynamically generated,
and obfuscated malicious code. In: Proceedings of the 2003
ACM Workshop on Rapid Malcode (WORM), Washington,
DC, pp. 76–82 (2003)

16. Dagon, D., Kolesnikov, O., Lee, W.: Advanced Polymorphic
Worms: Evading IDS by Blending in with Normal Traffic.
Georgia Institute of Technology, Technical Report (2005)

17. Das, A., Miretskiy, Y., Wright, C.P., Zadok, E.: Avfs: an on-
access anti-virus file system. In: Proceedings of the 13th USE-
NIX Security Symposium (2004)

18. Detoisien, E., Dotan, E.: Cheval de Troie furtif sous Windows:
mécanismes d’injection de code. MISC Magazine n◦10 (2003)

19. European Institute for Computer Anti-Virus Research (EI-
CAR) (2006) http://www.eicar.org/

20. eSafe eSafe test page. (2006) http://www.esafe.com/home/
csrt/eSafe_Demo/TestPage.asp

21. Eskin, E., Schultz, M.G., Stolfo, S.J., Zadok, E.: Data min-
ing methods for detection of new malicious executables. In:
Proceedings of the 2001 IEEE Symposium on Security and
Privacy. IEEE Computer Society, Washington, DC (2001)

22. Filiol, E.: Strong cryptography armoured computer viruses
forbidding code analysis. In: Proceedings of the 14th EICAR
Conference, pp. 216–227 (2005)

23. Filiol, E.: Malware scanning schemes secure against black-
box analysis. In: Proceedings of the 15th EICAR Conference
(2006)

24. Frej, P., Ogorkiewicz, M.: Analysis of Buffer Overflow
Attacks. (2004) http://www.windowsecurity.com/

25. GriYo: EPO: Entry-Point Obscuring. (2006) http://vx.net-
lux.org/lib/vgy01.html

26. Hazel, P.: Perl-Compatible Regular Expressions. (2003)
http://www.pcre.org/

27. IFSKit: Installable File System Kit. (2006) http://www.micro-
soft.com/whdc/devtools/ifskit/

28. International Computer Security Association Labs (2006)
https://www.icsalabs.com/

29. Josse, S.: Techniques d’obfuscation de code: chiffrer du clair
avec du clair. MISC Magazine n◦20, pp. 32–42 (2005)

30. Low Level Virtual Machine (2006) http://llvm.cs.uiuc.edu/
31. SandMark (2006) http://www.cs.arizona.edu/sandmark/
32. Security Focus Bugtraq (2006) http://www.security-

focus.com/bid/
33. Szor, P.: Advanced Code Evolution Techniques and Computer

Virus Generator Kits. Addison Wesley, Reading (2005)
34. Ultimate Packer for eXecutables (2006) http://upx.source-

forge.net/
35. Vigil@nce: Outlook accepts messages whose format does not

respect the RFC 822 (Standard for the format of ARPA
Internet text messages). BUGTRAQ-5259, CVE-2002-0637.
(2006a) http://vigilance.aql.fr/

36. Vigil@nce: Incorrect analysis of MIME messages. BUG-
TRAQ-9650, CVE-2004-2088. (2006b) http://vigilance.aql.fr/

37. Vigil@nce: Incorrect Unicode support. BUGTRAQ-10164.
(2006c) http://vigilance.aql.fr/

38. Vigil@nce: Incorrect analysis of LHA files. BUGTRAQ-
10243, CVE-2004-0234, CVE-2004-0235. (2006e) http://vigi-
lance.aql.fr/

39. Vigil@nce: Incorrect analysis of ZIP files when they are pro-
tected by a password or have several levels of overlap. BUG-
TRAQ-11600, BUGTRAQ-11669, BUGTRAQ-11732, CVE-
2004-2220, CVE-2004-2442. (2006g) http://vigilance.aql.fr/

40. Vigil@nce: No disinfection of ZIP file. BUGTRAQ-11448,
CVE-2004-0932-0937, CVE-2004-1096. (2006h) http://vigi-
lance.aql.fr/

41. Vigil@nce: Incorrect analysis of the data integrated into a
URI. BUGTRAQ-12269, CVE-2005-0218. (2006i) http://vig-
ilance.aql.fr/

42. Vigil@nce: Incorrect management of the files containing
ANSI escape characters (these sequences can disturb display
during the consultation of the audit files by the administrator).
BUGTRAQ-12793. (2006j) http://vigilance.aql.fr/

43. Vigil@nce: Incorrect analysis of RAR files. BUGTRAQ-
13416, CVE-2005-1346. (2006k) http://vigilance.aql.fr/

44. Virus Bulletin (2006) http://www.virusbtn.com/
45. Vmware (2006) http://www.vmware.com/
46. West Coast Labs (2006) http://www.westcoastlabs.org/
47. WinDDK: Windows NT Driver Devel Kit. (2006) http://

www.microsoft.com/whdc/driver/WDK/
48. Winpooch (2006) http://winpooch.sourceforge.net/
49. Y0da: Yoda’s packer. (2006) http://y0da.cjb.net/
50. Z0mbie: About Permutation (RPME). (2001a) http://vx.net-

lux.org/lib/
51. Z0mbie: Automated Reverse Engineering: Mistfall Engine.

(2001b) Retrieved from: http://vx.netlux.org/lib/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

